Preparation of a Microspherical Silver-Reduced Graphene Oxide-Bismuth Vanadate Composite and Evaluation of Its Photocatalytic Activity

Materials (Basel). 2016 Mar 4;9(3):160. doi: 10.3390/ma9030160.

Abstract

A novel Ag-reduced graphene oxide (rGO)-bismuth vanadate (BiVO₄) (AgGB) ternary composite was successfully synthesized via a one-step method. The prepared composite was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET) surface area measurement, Raman scattering spectroscopy, and ultraviolet-visible diffuse-reflection spectroscopy (UV-vis DRS). The results showed that bulk monoclinic needle-like BiVO₄ and Ag nanoparticles with a diameter of approximately 40 nm formed microspheres (diameter, 5-8 μm) with a uniform size distribution that could be loaded on rGO sheets to facilitate the transport of electrons photogenerated in BiVO₄, thereby reducing the rate of recombination of photogenerated charge carriers in the coupled AgGB composite system. Ag nanoparticles were dispersed on the surface of the rGO sheets, which exhibited a localized surface plasmon resonance phenomenon and enhanced visible light absorption. The removal efficiency of rhodamine B dye by AgGB (80.2%) was much higher than that of pure BiVO₄ (51.6%) and rGO-BiVO₄ (58.3%) under visible light irradiation. Recycle experiments showed that the AgGB composite still presented significant photocatalytic activity after five successive cycles. Finally, we propose a possible pathway and mechanism for the photocatalytic degradation of rhodamine B dye using the composite photocatalyst under visible light irradiation.

Keywords: Ag-reduced graphene oxide-BiVO4; characterization; degradation; photocatalyst.