Carbon Coated Boron Nitride Nanosheets for Polymer Nanocomposites with Enhanced Dielectric Performance

Materials (Basel). 2017 Jul 3;10(7):741. doi: 10.3390/ma10070741.

Abstract

Carbon coated boron nitride nanosheets (BNNSs@C) hybrids with different carbon contents were synthesized by a chemical vapor deposition (CVD) method. The content of carbon in as-obtained BNNSs@C hybrids could be precisely adjusted from 2.50% to 22.62% by controlling the carbon deposition time during the CVD procedure. Afterward, the BNNSs@C hybrids were subsequently incorporated into the polyvinylidene fluoride (PVDF) matrix to fabricate the BNNSs@C/PVDF nanocomposites through a combination of solution and melting blending methods. The dielectric properties of the as-obtained BNNSs@C/PVDF nanocomposites could be accurately tuned by adjusting the carbon content. The resultant nanocomposites could afford a high dielectric constant about 39 (10³ Hz) at BNNSs@C hybrids loading of 30 vol %, which is 4.8 times larger than that of pristine BNNSs-filled ones at the same filler loading, and 3.5 times higher than that of pure PVDF matrix. The largely enhanced dielectric performance could be ascribed to the improved interfacial polarizations of BNNSs/carbon and carbon/PVDF interfaces. The approach reported here offers an effective and alternative method to fabricate high-performance dielectric nanocomposites, which could be potentially applied to the embedded capacitors with high dielectric performance.

Keywords: PVDF nanocomposites; boron nitride nanosheets; chemical vapor deposition; dielectric constant; hybrids.