Plasmonic Light Scattering in Textured Silicon Solar Cells with Indium Nanoparticles from Normal to Non-Normal Light Incidence

Materials (Basel). 2017 Jul 1;10(7):737. doi: 10.3390/ma10070737.

Abstract

In this study, we sought to improve the light trapping of textured silicon solar cells using the plasmonic light scattering of indium nanoparticles (In NPs) of various dimensions. The light trapping modes of textured-silicon surfaces with and without In NPs were investigated at an angle of incidence (AOI) ranging from 0° to 75°. The optical reflectance, external quantum efficiency (EQE), and photovoltaic performance were first characterized under an AOI of 0°. We then compared the EQE and photovoltaic current density-voltage (J-V) as a function of AOI in textured silicon solar cells with and without In NPs. We observed a reduction in optical reflectance and an increase in EQE when the cells textured with pyramidal structures were coated with In NPs. We also observed an impressive increase in the average weighted external quantum efficiency (∆EQEw) and short-circuit current-density (∆Jsc) in cells with In NPs when illuminated under a higher AOI. The ∆EQEw values of cells with In NPs were 0.37% higher than those without In NPs under an AOI of 0°, and 3.48% higher under an AOI of 75°. The ∆Jsc values of cells with In NPs were 0.50% higher than those without In NPs under an AOI of 0°, and 4.57% higher under an AOI of 75°. The application of In NPs clearly improved the light trapping effects. This can be attributed to the effects of plasmonic light-scattering over the entire wavelength range as well as an expanded angle of incident light.

Keywords: indium nanoparticles (In NPs); light trapping modes; plasmonic light scattering; textured silicon solar cells.