Enhancing the Compatibility of Poly (1,4-butylene adipate) and Phenoxy Resin in Blends

Materials (Basel). 2017 Jun 23;10(7):692. doi: 10.3390/ma10070692.

Abstract

This work concerns the enhancement in the compatibility of blends of poly (1,4-butylene adipate) (PBA) with poly (hydroxy ether of bisphenol-A) (phenoxy) via alcoholytic exchange. Results on the thermal behavior and morphology show that the blended PBA/phenoxy system exhibits a homogeneous phase and a composition-dependent glass transition temperature (Tg). The interaction parameter (χ12) of PBA/phenoxy blends was calculated using the melting point depression method and was found to be -0.336. However, the compatibilization of PBA/phenoxy blends can be enhanced by chemical exchange reactions between PBA and phenoxy upon annealing. Annealed PBA/phenoxy blends were found to have a homogeneous phase with a higher Tg than that of the blended samples, and a smooth surface topography that could be improved by annealing at high temperature. The results of this investigation demonstrate that promotional phase compatibilization in the PBA/phenoxy blend can only be obtained upon thermal annealing, thus causing transreactions to occur between the dangling -OH of the phenoxy and the ester functional groups in PBA. Extensive transreactions cause alcoholytic exchange between the PBA and phenoxy to form a network, thus reducing the mobility of the polymer chain. Finally, the crystallinity of PBA decreased as the degree of transreaction in the blends increased.

Keywords: alcoholytic exchange; compatibility; glass transition temperature; homogeneous phase; interaction parameter.