Switching VO₂ Single Crystals and Related Phenomena: Sliding Domains and Crack Formation

Materials (Basel). 2017 May 19;10(5):554. doi: 10.3390/ma10050554.

Abstract

VO₂ is the prototype material for insulator-metal transition (IMT). Its transition at TIMT = 340 K is fast and consists of a large resistance jump (up to approximately five orders of magnitude), a large change in its optical properties in the visible range, and symmetry change from monoclinic to tetragonal (expansion by 1% along the tetragonal c-axis and 0.5% contraction in the perpendicular direction). It is a candidate for potential applications such as smart windows, fast optoelectronic switches, and field-effect transistors. The change in optical properties at the IMT allows distinguishing between the insulating and the metallic phases in the mixed state. Static or dynamic domain patterns in the mixed-state of self-heated single crystals during electric-field induced switching are in strong contrast with the percolative nature of the mixed state in switching VO₂ films. The most impressive effect-so far unique to VO₂-is the sliding of narrow semiconducting domains within a metallic background in the positive sense of the electric current. Here we show images from videos obtained using optical microscopy for sliding domains along VO₂ needles and confirm a relation suggested in the past for their velocity. We also show images for the disturbing damage induced by the structural changes in switching VO₂ crystals obtained for only a few current-voltage cycles.

Keywords: Joule-heating-induced-switching; Peltier coefficient; Seebeck coefficient; electric current-induced self-heating; insulator–metal-transition; negative-differential-resistivity (NDR).