High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring

Materials (Basel). 2017 Apr 26;10(5):454. doi: 10.3390/ma10050454.

Abstract

Aluminum alloys, which serve as heat sink in light-emitting diode (LED) lighting, are often inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al₂O₃, SiO₂, or graphite, to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical predictions and experimental measurements. With the adequate insertion of ceramic powders, the temperature of the Al heat sinks can be lowered by 5-11 °C, which is highly favorable for applications requiring cooling components.

Keywords: ceramic coating; heat dissipation; mechanical coating; thermal properties.