Fabrication of Carbonate Apatite Block through a Dissolution-Precipitation Reaction Using Calcium Hydrogen Phosphate Dihydrate Block as a Precursor

Materials (Basel). 2017 Mar 31;10(4):374. doi: 10.3390/ma10040374.

Abstract

Carbonate apatite (CO₃Ap) block, which is a bone replacement used to repair defects, was fabricated through a dissolution-precipitation reaction using a calcium hydrogen phosphate dihydrate (DCPD) block as a precursor. When the DCPD block was immersed in NaHCO₃ or Na₂CO₃ solution at 80 °C, DCPD converted to CO₃Ap within 3 days. β-Tricalcium phosphate was formed as an intermediate phase, and it was completely converted to CO₃Ap within 2 weeks when the DCPD block was immersed in Na₂CO₃ solution. Although the crystal structures of the DCPD and CO₃Ap blocks were different, the macroscopic structure was maintained during the compositional transformation through the dissolution-precipitation reaction. CO₃Ap block fabricated in NaHCO₃ or Na₂CO₃ solution contained 12.9 and 15.8 wt % carbonate, respectively. The diametral tensile strength of the CO₃Ap block was 2 MPa, and the porosity was approximately 57% regardless of the carbonate solution. DCPD is a useful precursor for the fabrication of CO₃Ap block.

Keywords: bone replacement; calcium hydrogen phosphate dihydrate; carbonate apatite; dissolution–precipitation reaction.