Design Optimization and Structural Performance Evaluation of Plate Girder Bridge Constructed Using a Turn-Over Process

Materials (Basel). 2017 Mar 13;10(3):283. doi: 10.3390/ma10030283.

Abstract

A recent trend in bridge construction has been the optimization of the cost-to-performance ratio. The most effective way to optimize the cost-to-performance ratio is to maximize the efficiency of the superstructure. Currently, many bridge engineers and designers favor two- or three- girder plate superstructures, due to their cost advantages. However, research on the performance enhancements of the I-type girder in two- or three- girder plate bridges is lacking. One of the most important performance improvement technologies for the I-type girder is the "preflex" method. In the preflex method, the specimen is inverted during the construction process to apply prestressed cambering to the specimen by using self-weight. However, a problem with the preflex construction method is difficulty with inverting the girder/plate system during the concrete curing process. Therefore, a new inverting system called Turn-Over (TO) wheel was proposed. Using TO wheels, wider variations to the I-type girder design can be achieved. Using this TO construction method, various cross sectional designs of girder plate systems can be considered due to its easiness in inverting the girder/plate system. In this study, the location of concrete confinement sections between the steel I-beams and concrete plates was varied in an I-girder cross-sectional design. Design parameters included effective height, flange thickness, flange width, confining concrete section width, etc. From this study, the optimum cross-sectional design of the I-girder/concrete plate system was achieved. Then, a single 20 m TO girder/plate system and two 20 m TO girder bridges were constructed and tested to evaluate their performance. From the test, failure behavior, load carrying capacity, crack pattern, etc., are obtained. The results are discussed in detail in this paper.

Keywords: precasted girder; preflex method; turn over construction; two- or three- girder plate bridge.