Preparation and Characterization of Polyurethanes with Cross-Linked Siloxane in the Side Chain by Sol-Gel Reactions

Materials (Basel). 2017 Feb 28;10(3):247. doi: 10.3390/ma10030247.

Abstract

A series of novel polyurethanes containing cross-linked siloxane in the side chain (SPU) were successfully synthesized through a sol-gel process. The SPU was composed of 0%-20% N-(n-butyl)-3-aminopropyltriethoxysilane (HDI-T) modified hexamethylene diisocynate homopolymer. The effects of HDI-T content on both the structure and properties of SPU were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical properties tests, gel content test, water contact angle measurement and water absorption test. FT-IR, XPS and XRD results confirmed the successful incorporation of HDI-T onto polyurethanes and the formation of Si-O-Si. The surface roughness and the Si content of SPU enhanced with the increase of HDI-T content. Both crystallization and melting temperature shifted to a lower point after the incorporation of HDI-T. The hydrophobicity, tensile strength, Young's modulus and pencil hardness overall increased with the increasing of HDI-T content, whereas the thermal stability and the elongation at break of SPU slightly decreased.

Keywords: cross-linked; micromorphology; polysiloxane; polyurethane.