Photocrosslinking of Polyglycidol and Its Derivative: Route to Thermoresponsive Hydrogels

Photochem Photobiol. 2018 Jan;94(1):52-60. doi: 10.1111/php.12819. Epub 2017 Sep 15.

Abstract

Hydrogels of biologically well-tolerated, high-molar-mass polyglycidol (PGl) and its thermoresponsive derivative poly(glycidol-co-ethyl glycidyl carbamate) have been obtained by direct UV crosslinking in the solid state. Polymers with molar masses up to 1.45 × 106 g mol-1 were crosslinked in the presence of benzophenone or (4-benzoylbenzyl)trimethylammonium chloride as photosensitizers. The photosensitizer concentration was varied from 2 to 10 wt%. The influence of polymer composition and photosensitizer type and amount on the crosslinking efficiency, swelling and temperature behavior of the obtained hydrogels was investigated. The photocrosslinking of PGl and poly(glycidol-co-ethyl glycidyl carbamate) led to hydrogels with swelling degrees up to 1700%. The swelling degrees of the hydrogels decreased with the increase of the environmental temperature indicating the thermoresponsive nature of gels. The swelling of obtained gels can be controlled by varying the composition of the copolymer precursor and by the network density.

Publication types

  • Research Support, Non-U.S. Gov't