Rare-earth doped fluoride phosphate glasses: structural foundations of their luminescence properties

Phys Chem Chem Phys. 2017 Aug 16;19(32):21612-21624. doi: 10.1039/c7cp03927a.

Abstract

We report a detailed structural investigation of a series of fluoride-phosphate glasses with different phosphate/fluoride ratios in the system xSr(PO3)2-(100 - x)[AlF3-CaF2-SrF2-MgF2] with x = 5, 10, 20, 40. Raman and multinuclear solid NMR spectroscopies confirm that the polyphosphate network structure is successively transformed to a structure dominated by Al-O-P linkages with increasing AlF3 content. Average numbers of Al-O-P linkages have been quantified by 27Al/31P NMR double-resonance techniques. The majority of the fluoride species are found in an alkaline earth metal/aluminum rich environment. The local environments for rare-earth ions have been characterized by EPR spectroscopy of Yb3+ ion spin probes and by photoluminescence experiments on Eu3+ dopant ions, including the 5D07F2 and 5D07F1 transition intensity ratio, the normalized phonon sideband intensities in the excitation spectra, and the lifetime of the 5D0 excited state. The results indicate clear correlations between these parameters as a function of composition, and confirm that even at the highest fluoride levels, there is still some residual rare-earth phosphate coordination.