The CRACAM Robot: Two-Dimensional Crystallization of Membrane Protein

Methods Mol Biol. 2017:1635:303-316. doi: 10.1007/978-1-4939-7151-0_16.

Abstract

Membrane proteins are key cellular components that perform essential functions. They are major therapeutic targets. Electron crystallography can provide structural experimental information at atomic scale for membrane proteins forming two-dimensional (2D) crystals. There are two different methods to produce 2D crystals of membrane proteins. (1) either directly in the bulk of the solution (2) or under a lipid monolayer at the air-water interface. This extra lipid monolayer helps to pre-orient the proteins in order to facilitate the growth of 2D crystals. We present here these two methods for 2D crystallization of membrane proteins implemented in a fully automated robot called CRACAM. These methods require small volume of low concentration of proteins, making it possible to explore more conditions with the same amount of protein. These automated methods outperform traditional 2D crystallization approaches in terms of accuracy, flexibility, and throughput.

Keywords: Automated 2D crystallization; Detergent; Electron crystallography; Lipid; Lipid monolayer; Membrane protein; Reconstitution in lipid bilayer; Structural biology.

MeSH terms

  • Automation, Laboratory
  • Crystallography, X-Ray / instrumentation*
  • Equipment Design
  • Lipids / chemistry
  • Membrane Proteins / chemistry*
  • Robotics

Substances

  • Lipids
  • Membrane Proteins