Genome-wide gene by lead exposure interaction analysis identifies UNC5D as a candidate gene for neurodevelopment

Environ Health. 2017 Jul 28;16(1):81. doi: 10.1186/s12940-017-0288-3.

Abstract

Background: Neurodevelopment is a complex process involving both genetic and environmental factors. Prenatal exposure to lead (Pb) has been associated with lower performance on neurodevelopmental tests. Adverse neurodevelopmental outcomes are more frequent and/or more severe when toxic exposures interact with genetic susceptibility.

Methods: To explore possible loci associated with increased susceptibility to prenatal Pb exposure, we performed a genome-wide gene-environment interaction study (GWIS) in young children from Mexico (n = 390) and Bangladesh (n = 497). Prenatal Pb exposure was estimated by cord blood Pb concentration. Neurodevelopment was assessed using the Bayley Scales of Infant Development.

Results: We identified a locus on chromosome 8, containing UNC5D, and demonstrated evidence of its genome-wide significance with mental composite scores (rs9642758, p meta = 4.35 × 10-6). Within this locus, the joint effects of two independent single nucleotide polymorphisms (SNPs, rs9642758 and rs10503970) had a p-value of 4.38 × 10-9 for mental composite scores. Correlating GWIS results with in vitro transcriptomic profiles identified one common gene, SLC1A5, which is involved in synaptic function, neuronal development, and excitotoxicity. Further analysis revealed interconnected interactions that formed a large network of 52 genes enriched with oxidative stress genes and neurodevelopmental genes.

Conclusions: Our findings suggest that certain genetic polymorphisms within/near genes relevant to neurodevelopment might modify the toxic effects of Pb exposure via oxidative stress.

Keywords: Child development; Environmental health; Gene-environment interactions; Genome-wide association study; Lead poisoning; SLC1A5; Single nucleotide polymorphism; UNC5D.

MeSH terms

  • Bangladesh
  • Child Development / drug effects*
  • Child, Preschool
  • Environmental Pollutants / blood
  • Environmental Pollutants / toxicity
  • Female
  • Fetal Blood / chemistry
  • Gene-Environment Interaction*
  • Humans
  • Infant
  • Infant, Newborn
  • Lead / blood
  • Lead / toxicity*
  • Male
  • Mexico
  • Neural Stem Cells
  • Pregnancy
  • Prenatal Exposure Delayed Effects / genetics
  • Prospective Studies
  • Receptors, Cell Surface / genetics*
  • Receptors, Cell Surface / metabolism
  • Transcriptome / drug effects*

Substances

  • Environmental Pollutants
  • Receptors, Cell Surface
  • UNC5D protein, human
  • Lead