Below-cloud wet scavenging of soluble inorganic ions by rain in Beijing during the summer of 2014

Environ Pollut. 2017 Nov:230:963-973. doi: 10.1016/j.envpol.2017.07.033. Epub 2017 Jul 24.

Abstract

Wet deposition is one of the most important and efficient removal mechanisms in the reduction of air pollution. As a key parameter determining wet deposition, the wet scavenging coefficient (WSC) is widely used in chemical transport models (CTMs) and reported values have large uncertainties. In this study, a high-resolution observational dataset of the soluble inorganic aerosols (SO42-, NO3- and NH4+, hereafter SNA) in the air and in rainwater during multiple precipitation events was collected using sequential sampling and used to estimate the below-cloud WSC in Beijing during the summer of 2014. The average concentrations of SNA in precipitation during the observational period were 7.9 mg/L, 6.2 mg/L and 4.6 mg/L, with the contributions from below-cloud scavenging constituting 56%, 61% and 47% of this, respectively. The scavenging ratios of SNA (i.e., the ratio of the concentrations in rain to concentrations in the air) were used with the height of the cloud base and the precipitation intensity to estimate the WSC. The estimated WSC of SO42- is comparable to that reported elsewhere. The relationship between the below-cloud WSC and the precipitation intensity followed an exponential power distribution (K=aPb) for SNA. In contrast to previous studies, this study considers the differences between the chemical compositions of the SNA, with the highest WSC for NO3-, followed by those of SO42- and NH4+. Therefore, we recommend that CTMs include ion specific WSCs in the future.

Keywords: Below-cloud scavenging; Inorganic aerosols; Precipitation chemistry; Wet deposition; Wet scavenging coefficient.

MeSH terms

  • Aerosols / analysis
  • Air Pollutants / analysis*
  • Air Pollution / statistics & numerical data*
  • Beijing
  • Environmental Monitoring*
  • Free Radical Scavengers / analysis*
  • Inorganic Chemicals / analysis*
  • Ions / analysis
  • Rain / chemistry*
  • Seasons

Substances

  • Aerosols
  • Air Pollutants
  • Free Radical Scavengers
  • Inorganic Chemicals
  • Ions