An increase in immature β-cells lacking Glut2 precedes the expansion of β-cell mass in the pregnant mouse

PLoS One. 2017 Jul 28;12(7):e0182256. doi: 10.1371/journal.pone.0182256. eCollection 2017.

Abstract

A compensatory increase in β-cell mass occurs during pregnancy to counter the associated insulin resistance, and a failure in adaptation is thought to contribute to gestational diabetes. Insulin-expressing but glucose-transporter-2-low (Ins+Glut2LO) progenitor cells are present in mouse and human pancreas, being predominantly located in extra-islet β-cell clusters, and contribute to the regeneration of the endocrine pancreas following induced ablation. We therefore sought to investigate the contribution of Ins+Glut2LO cells to β-cell mass expansion during pregnancy. Female C57Bl/6 mice were time mated and pancreata were collected at gestational days (GD) 6, 9, 12, 15, and 18, and postpartum D7 (n = 4/time-point) and compared to control (non-pregnant) animals. Beta cell mass, location, proliferation (Ki67+), and proportion of Ins+Glut2LO cells were measured using immunohistochemistry and bright field or confocal microscopy. Beta cell mass tripled by GD18 and β-cell proliferation peaked at GD12 in islets (≥6 β-cells) and small β-cell clusters (1-5 β-cells). The proportion and fraction of Ins+Glut2LO cells undergoing proliferation increased significantly at GD9 in both islets and clusters, preceding the increase in β-cell mass and proliferation, and their proliferation within clusters persisted until GD15. The overall number of clusters increased significantly at GD9. Quantitative PCR showed a significant increase in Pdx1 presence at GD9 vs. GD18 or control pancreas, and Pdx1 was visualized by immunohistochemistry within both Ins+Glut2LO and Ins+Glut2HI cells within clusters. These results indicate that Ins+Glut2LO cells are likely to contribute to β-cell mass expansion during pregnancy.

MeSH terms

  • Animals
  • Cell Proliferation / genetics
  • Cell Proliferation / physiology
  • Diabetes, Gestational / metabolism*
  • Female
  • Gestational Age
  • Glucose Transporter Type 2 / deficiency
  • Glucose Transporter Type 2 / metabolism*
  • Insulin-Secreting Cells / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • Polymerase Chain Reaction
  • Pregnancy

Substances

  • Glucose Transporter Type 2

Grants and funding

Funded by Canadian Institutes of Health Research (MOP-15263) http://www.cihr-irsc.gc.ca. Alan Thicke Centre for Juvenile Diabetes Research. Program of Experimental Medicine (R0362A06), Department of Medicine, Schulich School of Medicine and Dentistry, Western University.