The probability of wing damage in the dragonfly Sympetrum vulgatum (Anisoptera: Libellulidae): a field study

Biol Open. 2017 Sep 15;6(9):1290-1293. doi: 10.1242/bio.027078.

Abstract

Dragonfly wings resist millions of cycles of dynamic loading in their lifespan. During their operation, the wings are subjected to relatively high mechanical stresses. They further experience accidental collisions which result from the insects' daily activities, such as foraging, mating and fighting with other individuals. All these factors may lead to irreversible wing damage. Here, for the first time, we collected qualitative and quantitative data to systematically investigate the occurrence of damage in dragonfly wings in nature. The results obtained from the analysis of 119 wings from >30 individual Sympetrum vulgatum (Anisoptera: Libellulidae), collected at the second half of their flight period, indicate a high risk of damage in both fore- and hindwings. Statistical analyses show no significant difference between the extent of damage in fore- and hindwings, or between male and female dragonflies. However, we observe a considerable difference in the probability of damage in different wing regions. The wing damage is found to mainly result from two failure modes: wear and fracture.

Keywords: Adaptation; Collision; Damage; Dragonfly; Wear; Wing.