Activatable interpolymer complex-superparamagnetic iron oxide nanoparticles as magnetic resonance contrast agents sensitive to oxidative stress

Colloids Surf B Biointerfaces. 2017 Oct 1:158:578-588. doi: 10.1016/j.colsurfb.2017.07.025. Epub 2017 Jul 18.

Abstract

Magnetic resonance contrast agents that can be activated in response to specific triggers hold potential as molecular biosensors that may be of great utility in non-invasive disease diagnosis. We developed an activatable agent based on superparamagnetic iron oxide nanoparticles (SPIOs) that is sensitive to oxidative stress, a factor in the pathophysiology of numerous diseases. SPIOs were coated with poly(ethylene glycol) (PEG) and complexed with poly(gallol), a synthetic tannin. Hydrogen bonding between PEG and poly(gallol) creates a complexed layer around the SPIO that decreases the interaction of solute water with the SPIO, attenuating its magnetic resonance relaxivity. The complexed interpolymer nanoparticle is in an OFF state (decreased T2 contrast), where the contrast agent has a low T2 relaxivity of 7±2mM-1s-1. In the presence of superoxides, the poly(gallol) is oxidized and the polymers decomplex, allowing solute water to again interact with the SPIO, representing an ON state (increased T2 contrast) with a T2 relaxivity of 70±10mM-1s-1. These contrast agents show promise as effective sensors for diseases characterized in part by oxidative stress such as atherosclerosis, diabetes, and cancer.

Keywords: Activatable contrast; Magnetic resonance imaging; Nanoparticles; Oxidative stress; Superparamagnetic iron oxide nanoparticles.

MeSH terms

  • Contrast Media / chemistry*
  • Ferric Compounds / chemistry
  • Magnetic Resonance Imaging
  • Magnetite Nanoparticles / chemistry*
  • Nanoparticles / chemistry
  • Oxidative Stress
  • Polyethylene Glycols / chemistry

Substances

  • Contrast Media
  • Ferric Compounds
  • Magnetite Nanoparticles
  • ferric oxide
  • Polyethylene Glycols