Solvent-Free Synthesis of Uniform MOF Shell-Derived Carbon Confined SnO2 /Co Nanocubes for Highly Reversible Lithium Storage

Small. 2017 Oct;13(37). doi: 10.1002/smll.201701504. Epub 2017 Jul 26.

Abstract

Tin dioxide (SnO2 ) has attracted much attention in lithium-ion batteries (LIBs) due to its abundant source, low cost, and high theoretical capacity. However, the large volume variation, irreversible conversion reaction limit its further practical application in next-generation LIBs. Here, a novel solvent-free approach to construct uniform metal-organic framework (MOF) shell-derived carbon confined SnO2 /Co (SnO2 /Co@C) nanocubes via a two-step heat treatment is developed. In particular, MOF-coated CoSnO3 hollow nanocubes are for the first time synthesized as the intermediate product by an extremely simple thermal solid-phase reaction, which is further developed as a general strategy to successfully obtain other uniform MOF-coated metal oxides. The as-synthesized SnO2 /Co@C nanocubes, when tested as LIB anodes, exhibit a highly reversible discharge capacity of 800 mAh g-1 after 100 cycles at 200 mA g-1 and excellent cycling stability with a retained capacity of 400 mAh g-1 after 1800 cycles at 5 A g-1 . The experimental analyses demonstrate that these excellent performances are mainly ascribed to the delicate structure and a synergistic effect between Co and SnO2 . This facile synthetic approach will greatly contribute to the development of functional metal oxide-based and MOF-assisted nanostructures in many frontier applications.

Keywords: MOF shell; SnO2; carbon-confined nanocubes; lithium-ion battery; solvent-free synthesis.

Publication types

  • Research Support, Non-U.S. Gov't