Structural and functional diversity of caspase homologues in non-metazoan organisms

Protoplasma. 2018 Jan;255(1):387-397. doi: 10.1007/s00709-017-1145-5. Epub 2017 Jul 25.

Abstract

Caspases, the proteases involved in initiation and execution of metazoan programmed cell death, are only present in animals, while their structural homologues can be found in all domains of life, spanning from simple prokaryotes (orthocaspases) to yeast and plants (metacaspases). All members of this wide protease family contain the p20 domain, which harbours the catalytic dyad formed by the two amino acid residues, histidine and cysteine. Despite the high structural similarity of the p20 domain, metacaspases and orthocaspases were found to exhibit different substrate specificities than caspases. While the former cleave their substrates after basic amino acid residues, the latter accommodate substrates with negative charge. This observation is crucial for the re-evaluation of non-metazoan caspase homologues being involved in processes of programmed cell death. In this review, we analyse the structural diversity of enzymes containing the p20 domain, with focus on the orthocaspases, and summarise recent advances in research of orthocaspases and metacaspases of cyanobacteria, algae and higher plants. Although caspase homologues were initially proposed to be involved in execution of cell death, accumulating evidence supports the role of metacaspases and orthocaspases as important contributors to cell homeostasis during normal physiological conditions or cell differentiation and ageing.

Keywords: Algae; Cell death; Cyanobacteria; Cysteine protease; Metacaspase; Orthocaspase.

Publication types

  • Review

MeSH terms

  • Caspases / genetics*
  • Cell Death
  • Phaeophyceae / genetics*
  • Plants / genetics*

Substances

  • Caspases