Nitrogen-Superdoped 3D Graphene Networks for High-Performance Supercapacitors

Adv Mater. 2017 Sep;29(36). doi: 10.1002/adma.201701677. Epub 2017 Jul 24.

Abstract

An N-superdoped 3D graphene network structure with an N-doping level up to 15.8 at% for high-performance supercapacitor is designed and synthesized, in which the graphene foam with high conductivity acts as skeleton and nested with N-superdoped reduced graphene oxide arogels. This material shows a highly conductive interconnected 3D porous structure (3.33 S cm-1 ), large surface area (583 m2 g-1 ), low internal resistance (0.4 Ω), good wettability, and a great number of active sites. Because of the multiple synergistic effects of these features, the supercapacitors based on this material show a remarkably excellent electrochemical behavior with a high specific capacitance (of up to 380, 332, and 245 F g-1 in alkaline, acidic, and neutral electrolytes measured in three-electrode configuration, respectively, 297 F g-1 in alkaline electrolytes measured in two-electrode configuration), good rate capability, excellent cycling stability (93.5% retention after 4600 cycles), and low internal resistance (0.4 Ω), resulting in high power density with proper high energy density.

Keywords: electrochemical behaviors; graphene foams; highly conductive; nitrogen-superdoping; reduced graphene oxide.