Site-controlled and advanced epitaxial Ge/Si quantum dots: fabrication, properties, and applications

Nanotechnology. 2017 Sep 29;28(39):392001. doi: 10.1088/1361-6528/aa8143. Epub 2017 Jul 21.

Abstract

In this review, we report on fabrication paths, challenges, and emerging solutions to integrate group-IV epitaxial quantum dots (QDs) as active light emitters into the existing standard Si technology. Their potential as laser gain material for the use of optical intra- and inter-chip interconnects as well as possibilities to combine a single-photon-source-based quantum cryptographic means with Si technology will be discussed. We propose that the mandatory addressability of the light emitters can be achieved by a combination of organized QD growth assisted by templated self-assembly, and advanced inter-QD defect engineering to boost the optical emissivity of group-IV QDs at room-temperature. Those two main parts, the site-controlled growth and the light emission enhancement in QDs through the introduction of single defects build the main body of the review. This leads us to a roadmap for the necessary further development of this emerging field of CMOS-compatible group-IV QD light emitters for on-chip applications.