Recording characteristics of electrical impedance myography needle electrodes

Physiol Meas. 2017 Aug 21;38(9):1748-1765. doi: 10.1088/1361-6579/aa80ac.

Abstract

Objective: Neurologists and physiatrists need improved tools for the evaluation of skeletal muscle condition. Here we evaluate needle electrical impedance myography (EIM), a new minimally invasive approach to determine muscle status that could ultimately become a bedside tool for the assessment of neuromuscular disorders.

Approach: We design and study the recording characteristics of tetrapolar EIM needle electrodes combining theory and finite-element model simulations. We then use these results to build and pilot in vivo an EIM needle electrode in the rat gastrocnemius muscle ([Formula: see text]). The dielectric properties of muscle are reported (mean ± standard deviation).

Results: The numerical simulations show that the contribution of subcutaneous fat and muscle tissues to needle EIM data is <3% and >97%, respectively, and the sensed volume is [Formula: see text] cm3. Apparent resistivity [Formula: see text] [Formula: see text] cm and relative permittivity [Formula: see text] (dimensionless) measured at 10 kHz are in good agreement with in vivo dielectric properties reported in the literature.

Significance: The results presented show the feasibility of measuring muscle impedivity in vivo using a needle electrode from 10 kHz to 1 MHz. The development of needle EIM technology can open up a new field of study in electrodiagnostic medicine, with potential applications to both disease diagnosis and biomarker assessment of therapy.

MeSH terms

  • Animals
  • Electric Impedance
  • Electrodes
  • Finite Element Analysis
  • Male
  • Myography / instrumentation*
  • Needles*
  • Rats
  • Rats, Wistar