Photothermal Ring Integrated Intraocular Lens for High-Efficient Eye Disease Treatment

Adv Mater. 2017 Sep;29(34). doi: 10.1002/adma.201701617. Epub 2017 Jul 17.

Abstract

Posterior capsule opacification (PCO) is the most common complication after cataract surgery. So far, the only method for PCO treatment is the precisely focused laser surgery. However, it causes severe complications such as physical damages and neuron impairments. Here, a nanostructured photothermal ring integrated intraocular lens (Nano-IOLs) is reported, in which the rim of commercially available IOLs (C-IOLs) is decorated with silica coated Au nanorods (Au@SiO2 ), for high-efficient prevention of PCO after cataract surgery. The Nano-IOLs is capable of eliminating the residual lens epithelial cells (LECs) around Nano-IOLs under mild laser treatment and block the formation of disordered LECs fibrosis, which eventually leads to the loss of vision. The Nano-IOLs shows good biocompatibility as well as extraordinary region-confined photothermal effect. In vivo studies reveal that PCO occurrence in rabbit models is about 30%-40% by using Nano-IOLs, which is significantly lower than the control group that treated with C-IOLs (100% PCO occurrence) 30 d postsurgery. To the best of our knowledge, it is the first example to integrate nanotechnology with intraocular implants aiming to clinically relevant PCO. Our findings indicate that spatial controllability of photothermal effect from nanomaterials may provide a unique way to intervene the PCO-induced loss of vision.

Keywords: gold nanorods; nanoparticles; photothermal; posterior capsule opacification.

MeSH terms

  • Acrylic Resins
  • Animals
  • Eye Diseases
  • Eye, Artificial
  • Lens Implantation, Intraocular
  • Lenses, Intraocular*
  • Rabbits
  • Silicon Dioxide

Substances

  • Acrylic Resins
  • Silicon Dioxide