Spectroscopic determination of the ground-state dissociation energy and isotopic shift of NaD

J Chem Phys. 2017 Jul 14;147(2):024301. doi: 10.1063/1.4991036.

Abstract

Stimulated emission pumping with fluorescence depletion spectroscopy is used to determine the NaD X 1Σ+ ground-state dissociation energy and its isotopic shift. A total of 230 rovibrational levels in the range 9 ≤ v″ ≤ 29 and 1 ≤ J″ ≤ 11 are observed, where v″ = 29 is about 50 cm-1 below the dissociation limit. Analysis of the highest five vibrational levels yields the dissociation energy De = 15 822 ± 5 cm-1 with a vibrational quantum number at dissociation vD = 31.2 ± 0.1. The energy difference in the well depth of this isotopologue with respect to that of NaH is δDe = De(NaH) - De(NaD) = -7 cm-1. A new set of Dunham coefficients is derived to fit all the observed energy levels to within the experimental uncertainty.