Fit-for-purpose wastewater treatment: Conceptualization to development of decision support tool (I)

Sci Total Environ. 2017 Dec 31:607-608:600-612. doi: 10.1016/j.scitotenv.2017.06.269. Epub 2017 Jul 27.

Abstract

This article is the first in a series of two papers. Paper I focuses on model conceptualization and development, and Paper II in the series focuses on model validation and implementation. The amount of water reuse has been increasing across the globe. Wastewater can be treated based on the intended end use of reclaimed water. Fit-for-purpose wastewater treatment (WWT) simultaneously considers intended end use, economic viability, and environmental sustainability. WWT technologies differ mainly in terms of treatment efficiency, cost, energy use, and associated carbon emissions. The planning and evaluation of water reuse projects requires a decision support tool (DST) to evaluate alternative WWT trains and water reuse applications. However, such a DST is not available in the publically accessible literature. A DST, FitWater, has been developed for the evaluation of WWT for various urban reuses. The evaluation is based on the following criteria: amount of reclaimed water production, health risk of water reuse, cost, energy use, and carbon emissions. The cost is estimated as annualized life cycle cost and health risk is estimated using quantitative microbial risk assessment. The uncertainty analysis has been performed using probabilistic and fuzzy-based methods. A multi-criteria decision analysis, using fuzzy weighted average, is employed to aggregate different criteria and generate a final score. FitWater ranks alternative WWT trains based on the resulting final score. The proposed FitWater DST is user-friendly, and its application is demonstrated using an example. The DST can be enhanced to include additional treatment technologies and carbon emissions of different treatment processes.

Keywords: Decision support system; Energy intensity; Fit-for-purpose treatment; Health risk; Life cycle cost; Reclaimed water.