Metabolic Pathways Regulated by Chitosan Contributing to Drought Resistance in White Clover

J Proteome Res. 2017 Aug 4;16(8):3039-3052. doi: 10.1021/acs.jproteome.7b00334. Epub 2017 Jul 25.

Abstract

Increased endogenous chitosan (CTS) could be associated with improved drought resistance in white clover (Trifolium repens). Plants were pretreated with or without 1 mg/mL CTS and then were subjected to optimal or water-limited condition in controlled growth chambers for 6 days. Phenotypic and physiological results indicated that exogenous CTS significantly improved drought resistance of white clover. Metabolome results showed that exogenous CTS induced a significant increase in endogenous CTS content during dehydration accompanied by the maintenance of greater accumulation of sugars, sugar alcohols, amino acids, organic acids, and other metabolites (ascorbate, glutathione, flavonoids, putrescine, and spermidine). These compounds are associated with osmotic adjustment, antioxidant defense, stress signaling, and energy metabolism under stress condition. Similarly, transcriptome revealed that many genes in relation to amino acid and carbohydrate metabolism, energy production and conversion, and ascorbate-glutathione and flavonoid metabolism were significantly up-regulated by CTS in response to dehydration stress. CTS-induced drought resistance was associated with the accumulation of stress protective metabolites, the enhancement of ascorbate-glutathione and tricarboxylic acid cycle, and increases in the γ-aminobutyric acid shunt, polyamine synthesis, and flavonoids metabolism contributing to improved osmotic adjustment, antioxidant capacity, stress signaling, and energy production for stress defense, thereby maintaining metabolic homeostasis under dehydration stress.

Keywords: differentially expressed genes; growth; metabolite; metabolome; osmotic adjustment; transcriptome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / drug effects*
  • Chitosan / pharmacology*
  • Droughts
  • Gene Expression Regulation, Plant / drug effects
  • Medicago / metabolism
  • Medicago / physiology*
  • Metabolic Networks and Pathways*
  • Metabolome / drug effects
  • Stress, Physiological

Substances

  • Chitosan