An in vitro study of the interaction of the chemotherapeutic drug Actinomycin D with lung cancer cell lines using Raman micro-spectroscopy

J Biophotonics. 2018 Jan;11(1). doi: 10.1002/jbio.201700112. Epub 2017 Sep 15.

Abstract

The applications of Raman microspectroscopy have been extended in recent years into the field of clinical medicine, and specifically in cancer research, as a non-invasive diagnostic method in vivo and ex vivo, and the field of pharmaceutical development as a label-free predictive technique for new drug mechanisms of action in vitro. To further illustrate its potential for such applications, it is important to establish its capability to fingerprint drug mechanisms of action and different cellular reactions. In this study, cytotoxicity assays were employed to establish the toxicity profiles for 48 and 72 hours exposure of lung cancer cell lines, A549 and Calu-1, after exposure to Actinomycin D (ACT) and Raman micro-spectroscopy was used to track its mechanism of action at subcellular level and subsequent cellular responses. Multivariate data analysis was used to elucidate the spectroscopic signatures associated with ACT chemical binding and cellular resistances. Results show that the ACT uptake and mechanism of action are similar in the 2 cell lines, while A549 cells exhibits spectral signatures of resistance to apoptosis related to its higher chemoresistance to the anticancer drug ACT. The observations are discussed in comparison to previous studies of the similar anthracyclic chemotherapeutic agent Doxorubicin. A, Preprocessed Raman spectrum of ACT stock solution dissolved in sterile water and mean spectrum with SD of (B) nucleolus, (C) nucleus and (D) cytoplasm of A549 cell lines after 48 hours exposure to the corresponding IC50 .

Keywords: A549; Actinomycin D; Calu-1; Raman micro-spectroscopy; binding signature.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • A549 Cells
  • Antineoplastic Agents / pharmacology*
  • Dactinomycin / pharmacology*
  • Humans
  • Lung Neoplasms / pathology*
  • Spectrum Analysis, Raman*

Substances

  • Antineoplastic Agents
  • Dactinomycin