Room-Temperature Multiferroics and Thermal Conductivity of 0.85BiFe1-2xTixMgxO3-0.15CaTiO3 Epitaxial Thin Films (x = 0.1 and 0.2)

ACS Appl Mater Interfaces. 2017 Aug 2;9(30):25397-25403. doi: 10.1021/acsami.7b06961. Epub 2017 Jul 19.

Abstract

Thin films of 0.85BiFe1-2xTixMgxO3-0.15CaTiO3 (x = 0.1 and 0.2, abbreviated to C-1 and C-2, respectively) have been fabricated on (001) SrTiO3 substrate with and without a conductive La0.7Sr0.3MnO3 buffer layer. The X-ray θ-2θ and ϕ scans, atomic force microscopy, and cross-sectional transmission electron microscopy confirm the (001) epitaxial nature of the thin films with very high growth quality. Both the C-1 and C-2 thin films show well-shaped magnetization-magnetic field hysteresis at room temperature, with enhanced switchable magnetization values of 145.3 and 42.5 emu/cm3, respectively. The polarization-electric loops and piezoresponse force microscopy measurements confirm the room-temperature ferroelectric nature of both films. However, the C-1 films illustrate a relatively weak ferroelectric behavior and the poled states are easy to relax, whereas the C-2 films show a relatively better ferroelectric behavior with stable poled states. More interestingly, the room-temperature thermal conductivity of C-1 and C-2 films are measured to be 1.10 and 0.77 W/(m·K), respectively. These self-consistent multiferroic properties and thermal conductivities are discussed by considering the composition-dependent content and migration of Fe-induced electrons and/or charged point defects. This study not only provides multifunctional materials with excellent room-temperature magnetic, ferroelectric, and thermal conductivity properties but may also stimulate further work to develop BiFeO3-based materials with unusual multifunctional properties.

Keywords: TEM; ferroelectric nature; magnetic properties; thermal conductivity; thin films.