Bufalin sensitizes human bladder carcinoma cells to TRAIL-mediated apoptosis

Oncol Lett. 2017 Jul;14(1):853-859. doi: 10.3892/ol.2017.6223. Epub 2017 May 22.

Abstract

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, has garnered interest as it is relatively non-toxic to normal cells, but selectively induces apoptotic cell death in multiple types of transformed or malignant cells. Bufalin is the major digoxin-like immunoreactive component of Sum Su, which is obtained from the skin and parotid venom gland of the toad. Bufalin is known to inhibit cell proliferation and induce apoptosis in a variety of cancer cells. The present study investigated whether bufalin promoted TRAIL-induced apoptotic cell death. In the present study, a combined treatment using bufalin and TRAIL significantly increased TRAIL-mediated inhibition of cell viability and increased apoptosis in T24 human bladder cancer cells. The apoptotic effects were associated with the upregulation of death receptor proteins and the downregulation of cellular Fas-associated death domain-like interleukin-1β-converting enzyme inhibitory protein and X-linked inhibitor of apoptosis protein. Furthermore, the data revealed that bufalin and TRAIL activated caspase-3, -8 and -9 and subsequently increased the degradation of poly (ADP-ribose) polymerase. Taken altogether, the nontoxic doses of bufalin and TRAIL sensitized T24 cells to TRAIL-mediated apoptosis. Therefore, bufalin may provide an effective therapeutic strategy for the safe treatment of human bladder cancers that are resistant to TRAIL.

Keywords: apoptosis; bladder cancer; bufalin; caspase; tumor necrosis factor-related apoptosis-inducing ligand.