Synthesis of Chlorine-Substituted Graphdiyne and Applications for Lithium-Ion Storage

Angew Chem Int Ed Engl. 2017 Aug 28;56(36):10740-10745. doi: 10.1002/anie.201704779. Epub 2017 Jul 26.

Abstract

Chlorine-substituted graphdiyne (Cl-GDY) is prepared through a Glaser-Hay coupling reaction on the copper foil. Cl-GDY is endowed with a unique π-conjugated carbon skeleton with expanded pore size in two dimensions, having graphdiyne-like sp- and sp2 - hybridized carbon atoms. As a result, the transfer tunnels for lithium (Li) ions in the perpendicular direction of the molecular plane are enlarged. Moreover, benefiting from the bottom-to-up fabrication procedure of graphdiyne and the strong chemical tailorability of the alkinyl-contained monomer, the amount of substitutional chlorine atoms with appropriate electronegativity and atom size is high and evenly distributed on the as-prepared carbon framework, which will synergistically stabilize the Li intercalated in the Cl-GDY framework, and thus generate more Li storage sites. Profiting from the above unique structure, Cl-GDY shows remarkable electrochemical properties in lithium ion half-cells.

Keywords: carbon materials; chlorine; energy storage; graphdiyne; two-dimensional materials.

Publication types

  • Research Support, Non-U.S. Gov't