Arousal and the control of perception and movement

Curr Trends Neurol. 2016:10:53-64.

Abstract

Recent discoveries on the nature of the activity generated by the reticular activating system (RAS) suggest that arousal is much more involved in perception and movement than previously thought. The RAS is not simply an amorphous, unspecific region but rather a distinct group of nuclei with specific cell and transmitter types that control waking and modulate such processes as perception and movement. Thus, disturbances in the RAS will affect a number of neurological disorders. The discovery of gamma band activity in the RAS determined that high threshold calcium channels are responsible for generating gamma band activity in the RAS. Results showing that waking is mediated by CaMKII modulation of P/Q-type channels and REM sleep is modulated by cAMP/PK modulation of N-type channels points to different intracellular pathways influencing each state. Few studies address these important breakthroughs. Novel findings also show that the same primate RAS neurons exhibiting activity in relation to arousal are also involved in locomotion. Moreover, deep brain stimulation of this region, specifically the pedunculopontine nucleus (PPN DBS), in Parkinson's disease has salutary effects on movement, sleep, and cognition. Gamma oscillations appear to participate in sensory perception, problem solving, and memory, and coherence at these frequencies may occur at cortical or thalamocortical levels. However, rather than participating in the temporal binding of sensory events, gamma band activity generated in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking, and relay such activation to the cortex. Continuous sensory input will thus induce gamma band activity in the RAS to participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our perceptions and actions. Such a role has received little attention but promises to help understand and treat a number of neurological disorders.

Keywords: Calcium channels; Parkinson’s disease; deep brain stimulation; gamma oscillations; pedunculopontine nucleus; waking.