Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery

Biochim Biophys Acta Gen Subj. 2017 Sep;1861(9):2334-2341. doi: 10.1016/j.bbagen.2017.07.002. Epub 2017 Jul 6.

Abstract

A new strategy for gene transfection using the nanocarrier of cell penetrating peptides (CPPs; PepFect14 (PF14) or PepFect14 (PF14) (PF221)) in complex with graphene oxide (GO) is reported. GO complexed with CPPs and plasmid (pGL3), splice correction oligonucleotides (SCO) or small interfering RNA (siRNA) are performed. Data show adsorption of CPPs and oligonucleotides on the top of the graphenic lamellar without any observed change of the particle size of GO. GO mitigates the cytotoxicity of CPPs and improves the material biocompatibility. Complexes of GO-pGL3-CPPs (CPPs; PF14 or PF221) offer 2.1-2.5 fold increase of the cell transfection compared to pGL3-CPPs (CPPs; PF14 or PF221). GO-SCO-PF14 assemblies effectively transfect the cells with an increase of >10-25 fold compared to the transfection using PF14. The concentration of GO plays a significant role in the material nanotoxicity and the transfection efficiency. The results open a new horizon in the gene treatment using CPPs and offer a simple strategy for further investigations.

Keywords: Cell penetrating peptides; Gene delivery; Graphene oxide; Transfection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Survival
  • Cell-Penetrating Peptides / chemistry*
  • Graphite / chemistry*
  • HeLa Cells
  • Humans
  • Nanoparticles
  • Oligonucleotides / administration & dosage*
  • Particle Size
  • Receptors, Scavenger / metabolism
  • Transfection / methods*

Substances

  • Cell-Penetrating Peptides
  • Oligonucleotides
  • Receptors, Scavenger
  • Graphite