Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae

PLoS One. 2017 Jul 7;12(7):e0180658. doi: 10.1371/journal.pone.0180658. eCollection 2017.

Abstract

The two-spotted spider mite, Tetranychus urticae, is a chelicerate herbivore with an extremely wide host range and an extraordinary ability to develop pesticide resistance. Due to its responsiveness to natural and synthetic xenobiotics, the spider mite is becoming a prime pest herbivore model for studies of the evolution of host range, plant-herbivore interactions and mechanisms of xenobiotic resistance. The spider mite genome has been sequenced and its transcriptional responses to developmental and various biotic and abiotic cues have been documented. However, to identify biological and evolutionary roles of T. urticae genes and proteins, it is necessary to develop methods for the efficient manipulation of mite gene function or protein activity. Here, we describe protocols developed for the delivery of small molecules into spider mites. Starting with mite maintenance and the preparation of the experimental mite populations of developmentally synchronized larvae and adults, we describe 3 methods for delivery of small molecules including artificial diet, leaf coating, and soaking. The presented results define critical steps in these methods and demonstrate that they can successfully deliver tracer dyes into mites. Described protocols provide guidelines for high-throughput setups for delivery of experimental compounds that could be used in reverse genetics platforms to modulate gene expression or protein activity, or for screens focused on discovery of new molecules for mite control. In addition, described protocols could be adapted for other Tetranychidae and related species of economic importance such as Varroa, dust and poultry mites.

MeSH terms

  • Animals
  • Drug Delivery Systems*
  • Drug Resistance / genetics
  • Herbivory / drug effects
  • Host Specificity
  • Host-Parasite Interactions / drug effects
  • Pesticides / chemistry
  • Pesticides / pharmacology*
  • Phylogeny*
  • Plants / parasitology
  • Tetranychidae / drug effects*
  • Tetranychidae / pathogenicity

Substances

  • Pesticides

Grants and funding

Development of described protocols was supported by the Ontario Research Fund–Research Excellence Round 8 (RE08-067) (to MG and VG). TS has been supported by the Postdoctoral Fellowship for Research Abroad funded by the Japan Society for the Promotion of Science (JSPS) and MAN by the National Counsel of Technological and Scientific Development (CNPq/Brazil). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.