Monoclinic ZIF-8 Nanosheet-Derived 2D Carbon Nanosheets as Sulfur Immobilizer for High-Performance Lithium Sulfur Batteries

ACS Appl Mater Interfaces. 2017 Aug 2;9(30):25239-25249. doi: 10.1021/acsami.7b04432. Epub 2017 Jul 19.

Abstract

2D hierarchically porous carbon (2D-HPC) nanosheets with unique advantages are highly desired as host materials for lithium sulfur (Li-S) batteries and other energy storage devices. Herein, we propose a self-template and organic solvent-free approach to synthesize nanosheets of monoclinic ZIF-8 at room temperature from which 2D-HPC nanosheets (ZIF-8 nanosheets carbon denoted as ZIF-8-NS-C) are derived to be an efficient sulfur immobilizer for Li-S batteries for the first time. The anisotropic nanosheets are believed to relate to the symmetry of the monoclinic structure. The 2D ZIF-8-NS-C nanosheets with embedded hierarchical pores construct an effective conductive network through "plane-to-plane" modes to endow superior electron transfer and fast electrochemical kinetics. Moreover, the nitrogen-rich feature of ZIF-8-NS-C can increase the affinity/interaction of carbon host with lithium polysulfides, favoring the cyclic performance. The sulfur/ZIF-8-NS-C (S/ZIF-8-NS-C) cathode shows a superior rate capability with high capacities of 1226 mA h g-1 at 0.2 C and 785 mA h g-1 at 2 C, and a sustainable cycling stability with a capacity attenuation of 0.12% per cycle at 0.5 C for 300 cycles. The approach proposed here pioneers the controllable design of MOF-based structures to inspire the exploration of more variable MOF-derived porous materials for energy storage applications.

Keywords: green and template-free synthesis; lithium−sulfur batteries; monoclinic ZIF-8 nanosheets; superior electron conductivity; two-dimensional hierarchically carbon.