IWP2 impairs the development of porcine somatic cell nuclear transfer embryos via Wnt signaling pathway inactivation

Biomed Rep. 2017 Jul;7(1):36-40. doi: 10.3892/br.2017.918. Epub 2017 May 24.

Abstract

Wnt signaling is critical in embryonic development and post-embryonic tissue homeostasis. The aim of the present study was to evaluate the expression levels of canonical Wnt signaling genes in porcine somatic cell nuclear transfer (SCNT) embryos. Quantitative polymerase chain reaction analysis was performed in porcine SCNT embryos, and the results indicated that the temporal expression patterns of canonical signaling genes were similar between in vivo and SCNT embryos from the 2-cell to the blastocyst stage. In addition, aberrant expression in a small number of Wnt signaling genes in SCNT embryos was identified. IWP2, an inhibitor of Wnt processing, was applied to the culture of SCNT embryos. The Wnt signaling pathway in the SCNT blastocysts may be inactivated via IWP2 treatment, reflecting the low expression levels of c-Myc and peroxisome proliferator-activated receptor δ. Furthermore, blastocyst hatching was damaged by IWP2 treatment. These findings indicate that the canonical Wnt signaling pathway is important for SCNT embryo development.

Keywords: IWP2; Wnt signaling; embryo; gene expression; somatic cell nuclear transfer.