Synthesis and Self-Assembled Behavior of pH-Responsive Chiral Liquid Crystal Amphiphilic Copolymers Based on Diosgenyl-Functionalized Aliphatic Polycarbonate

Nanomaterials (Basel). 2017 Jul 4;7(7):169. doi: 10.3390/nano7070169.

Abstract

The morphological control of polymer micellar aggregates is an important issue in applications such as nanomedicine and material science. Stimuli responsive soft materials have attracted significant attention for their well-controlled morphologies. However, despite extensive studies, it is still a challenge to prepare nanoscale assemblies with responsive behaviors. Herein, a new chiral liquid crystal (LC) aliphatic polycarbonate with side chain bearing diosgenyl mesogen, named mPEG43-PMCC25-P(MCC-DHO)15, was synthesized through the ring-opening polymerization and coupling reaction. The self-assembled behavior of the LC copolymer was explored. In aqueous solution, the functionalized copolymer could self-organize into different nanostructures with changing pH value, such as nanospheres and nanofibers. This would offer new possibilities in the design of nanostructured organic materials.

Keywords: diosgenin; liquid crystal; nanofibers; nanospheres; self-assembly.