Highly accurate intensity factors of pure CO2 lines near 2 μm

J Chem Phys. 2017 Jun 28;146(24):244309. doi: 10.1063/1.4989925.

Abstract

Line intensities for carbon dioxide are measured with a novel spectroscopic approach, assisted by an optical frequency comb synthesizer for frequency calibration purposes. The main feature of the spectrometer consists in the exploitation of optical feedback from a V-shaped high-finesse optical resonator to effectively narrow a distributed feedback diode laser at the wavelength of 2 μm. Laser-gas interaction takes place inside an isothermal cell, which is placed on the transmission from the cavity. High quality, self-calibrated, absorption spectra are observed in pure CO2 samples at different gas pressures, in coincidence with three lines of the R-branch of the ν1 + 2ν2 + ν3 band. Line intensities are determined using a global fitting approach in which a manifold of spectra are simultaneously analyzed across the range of pressures between 5 and 100 Torr, sharing a restricted number of unknown parameters. Various sources of uncertainty have been identified and carefully quantified, thus leading to an overall uncertainty ranging between 0.17% and 0.23%. The measured values are in a very good agreement with recent ab initio predictions.