System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells

Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5741-E5749. doi: 10.1073/pnas.1706711114. Epub 2017 Jun 27.

Abstract

The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms.

Keywords: Golgi; actin; cytoskeleton; image processing; networks.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / metabolism*
  • Arabidopsis / cytology*
  • Biological Transport
  • Cytoplasm / metabolism
  • Golgi Apparatus / metabolism
  • Hypocotyl / cytology*
  • Image Processing, Computer-Assisted
  • Imaging, Three-Dimensional
  • Microtubules / metabolism
  • Models, Statistical
  • Organelles / metabolism
  • Phenotype
  • Plant Cells / metabolism*
  • Protein Transport
  • Regression Analysis