Sealing-free fast-response paraffin/nanoporous gold hybrid actuator

Nanotechnology. 2017 Sep 20;28(38):385501. doi: 10.1088/1361-6528/aa7be6. Epub 2017 Jun 26.

Abstract

Paraffin-based actuators can deliver large actuation strokes and high actuation stress, but often suffer from a low response rate and leaking problems. Here, we report a new paraffin/metal hybrid actuator, which was fabricated by infiltrating nanoporous gold with paraffin. It exhibits a fast actuation rate owing to the high thermal conductivity of the inter-connected metal phase, and requires no external sealing because liquid paraffin can be well confined in nanoscale channels, due to the large capillarity. We found that in this hybrid actuator, the stress generated by actuation is negligibly small when the characteristic size of the nanoporous gold (L) is above ∼70 nm, and increases dramatically with a decreasing size when L < ∼70 nm. The large actuation stress in samples with L < ∼70 nm is ascribed to a 'smaller is stronger' effect in paraffin wax-the paraffin in smaller pores can sustain larger tensile stress, and thus the contraction of paraffin during cooling can be translated into larger compression stress and strain energy in a metal framework, leading to a larger actuation stress and energy. We also demonstrate that complex actuation motions can be achieved by incorporating hierarchical-structured nanoporous metal with paraffin.