Genome-Wide Association Mapping of Seed Coat Color in Brassica napus

J Agric Food Chem. 2017 Jul 5;65(26):5229-5237. doi: 10.1021/acs.jafc.7b01226. Epub 2017 Jun 26.

Abstract

Seed coat color is an extremely important breeding characteristic of Brassica napus. To elucidate the factors affecting the genetic architecture of seed coat color, a genome-wide association study (GWAS) of seed coat color was conducted with a diversity panel comprising 520 B. napus cultivars and inbred lines. In total, 22 single-nucleotide polymorphisms (SNPs) distributed on 7 chromosomes were found to be associated with seed coat color. The most significant SNPs were found in 2014 near Bn-scaff_15763_1-p233999, only 43.42 kb away from BnaC06g17050D, which is orthologous to Arabidopsis thaliana TRANSPARENT TESTA 12 (TT12), an important gene involved in the transportation of proanthocyanidin precursors into the vacuole. Two of eight repeatedly detected SNPs can be identified and digested by restriction enzymes. Candidate gene mining revealed that the relevant regions of significant SNP loci on the A09 and C08 chromosomes are highly homologous. Moreover, a comparison of the GWAS results to those of previous quantitative trait locus (QTL) studies showed that 11 SNPs were located in the confidence intervals of the QTLs identified in previous studies based on linkage analyses or association mapping. Our results provide insights into the genetic basis of seed coat color in B. napus, and the beneficial allele, SNP information, and candidate genes should be useful for selecting yellow seeds in B. napus breeding.

Keywords: Brassica napus; association mapping; seed coat color.

MeSH terms

  • Arabidopsis / genetics
  • Brassica napus / genetics*
  • Brassica napus / metabolism
  • Chromosome Mapping
  • Genome, Plant
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Polymorphism, Single Nucleotide
  • Quantitative Trait Loci
  • Seeds / genetics*
  • Seeds / metabolism

Substances

  • Plant Proteins