Common and Potentially Prebiotic Origin for Precursors of Nucleotide Synthesis and Activation

J Am Chem Soc. 2017 Jul 5;139(26):8780-8783. doi: 10.1021/jacs.7b01562. Epub 2017 Jun 22.

Abstract

We have recently shown that 2-aminoimidazole is a superior nucleotide activating group for nonenzymatic RNA copying. Here we describe a prebiotic synthesis of 2-aminoimidazole that shares a common mechanistic pathway with that of 2-aminooxazole, a previously described key intermediate in prebiotic nucleotide synthesis. In the presence of glycolaldehyde, cyanamide, phosphate and ammonium ion, both 2-aminoimidazole and 2-aminooxazole are produced, with higher concentrations of ammonium ion and acidic pH favoring the former. Given a 1:1 mixture of 2-aminoimidazole and 2-aminooxazole, glyceraldehyde preferentially reacts and cyclizes with the latter, forming a mixture of pentose aminooxazolines, and leaving free 2-aminoimidazole available for nucleotide activation. The common synthetic origin of 2-aminoimidazole and 2-aminooxazole and their distinct reactivities are suggestive of a reaction network that could lead to both the synthesis of RNA monomers and to their subsequent chemical activation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aminoimidazole Carboxamide / chemistry
  • Molecular Structure
  • Nucleotides* / chemical synthesis
  • Oxazoles / chemistry*
  • Prebiotics*

Substances

  • 2-aminooxazole
  • Nucleotides
  • Oxazoles
  • Prebiotics
  • Aminoimidazole Carboxamide