Top-Down Integration of Molybdenum Disulfide Transistors with Wafer-Scale Uniformity and Layer Controllability

Small. 2017 Sep;13(35). doi: 10.1002/smll.201603157. Epub 2017 Jun 22.

Abstract

The lack of stable and efficient techniques to synthesize high-quality large-area thin films is one of the major bottlenecks for the real-world application of the 2D transition metal dichalcogenides. In this work, the growth of molybdenum disulfide (MoS2 ) on sapphire substrates by sulfurizing the MoO3 film deposited by atomic layer deposition (ALD) is reported. The advantages of the ALD method can be well inherited, and the synthesized MoS2 films exhibit excellent layer controllability, wafer-scale uniformity, and homogeneity. MoS2 films with desired thickness can be obtained by varying MoO3 ALD cycles. The atomic force microscope and Raman measurements demonstrate that the ALD-based MoS2 has good uniformity. Clear Raman shift as a function of the film thickness is observed. Field-effect transistor devices are fabricated through a transfer-free and top-down process. High On/Off current ratio (≈104 ) and medium-level electron mobilities (≈0.76 cm2 V-1 s-1 for monolayer, and 5.9 cm2 V-1 s-1 for four-layer) are obtained. The work opens up an attractive approach to realize the application of wafer-scale 2D materials in integrated circuits and systems.

Keywords: MoO3; MoS2; atomic layer deposition; sulfuration; transistors.

Publication types

  • Research Support, Non-U.S. Gov't