Mechanisms underlying the long-term survival of the monocot Dracaena marginata under drought conditions

Tree Physiol. 2017 Sep 1;37(9):1182-1197. doi: 10.1093/treephys/tpx072.

Abstract

Efficient water management is essential for the survival of vascular plants under drought stress. While interrelations among drought stress, plant anatomy and physiological functions have been described in woody dicots, similar research is very limited for non-palm arborescent and shrubby monocots despite their generally high drought tolerance. In this study, potted transplants of Dracaena marginata Lam. in primary growth stage were exposed to several short- and long-term drought periods. Continuous measurements of sap flow and stem diameter, the evaluation of capacitance and leaf conductance, the quantification of non-structural carbohydrates (NSC), and organ-specific anatomical analyses were performed to reveal the mechanisms promoting plant resistance to limited soil moisture. The plants showed sensitive stomata regulation in the face of drying soil, but only intermediate resistance to water loss through cuticular transpiration. The water losses were compensated by water release from stem characterized by densely interconnected, parenchyma-rich ground tissue and considerable hydraulic capacitance. Our results suggest that the high concentration of osmotically active NSC in aboveground organs combined with the production of root pressures supported water uptake and the restoration of depleted reserves after watering. The described anatomical features and physiological mechanisms impart D. marginata with high resistance to irregular watering and long-term water scarcity. These findings should help to improve predictions with respect to the impacts of droughts on this plant group.

Keywords: hydraulic capacitance; non-structural carbohydrates; sap flow; stomatal conductance; water potential; xylem.

MeSH terms

  • Dracaena / physiology*
  • Droughts*
  • Plant Leaves / physiology
  • Plant Stems / physiology
  • Plant Stomata / physiology
  • Plant Transpiration
  • Water / physiology*

Substances

  • Water