Targeting associated mechanisms of anterior cruciate ligament injury in female community-level athletes

Sports Biomech. 2017 Nov;16(4):501-513. doi: 10.1080/14763141.2016.1246597. Epub 2017 Feb 24.

Abstract

This study aims to determine if biomechanically informed injury prevention training can reduce associated factors of anterior cruciate ligament injury risk among a general female athletic population. Female community-level team sport athletes, split into intervention (n = 8) and comparison groups (n = 10), completed a sidestepping movement assessment prior to and following a 9-week training period, in which kinetic, kinematic and neuromuscular data were collected. The intervention group completed a biomechanically informed training protocol, consisting of plyometric, resistance and balance exercises, adjunct to normal training, for 15-20 min twice a week. Following the 9-week intervention, total activation of the muscles crossing the knee (n = 7) decreased for both the training (∆ -15.02%, d = 0.45) and comparison (∆ -9.68%, d = 0.47) groups. This decrease was accompanied by elevated peak knee valgus (∆ +27.78%, d = -0.36) and internal rotation moments (∆ +37.50%, d = -0.56) in the comparison group, suggesting that female community athletes are at an increased risk of injury after a season of play. Peak knee valgus and internal rotation knee moments among athletes who participated in training intervention did not change over the intervention period. Results suggest participation in a biomechanically informed training intervention may mitigate the apparent deleterious effects of community-level sport participation.

Keywords: Knee < body; injury < sport topics; kinematics < movement; kinetics < movement.

MeSH terms

  • Anterior Cruciate Ligament Injuries / physiopathology*
  • Anterior Cruciate Ligament Injuries / prevention & control*
  • Athletic Injuries / physiopathology*
  • Athletic Injuries / prevention & control*
  • Biomechanical Phenomena
  • Female
  • Humans
  • Knee / physiology
  • Movement
  • Muscle, Skeletal / physiology
  • Physical Conditioning, Human / methods*
  • Plyometric Exercise
  • Postural Balance / physiology
  • Resistance Training
  • Risk Factors
  • Rotation
  • Torso / physiology
  • Young Adult