Tumor-penetrating Peptide-integrated Thermally Sensitive Liposomal Doxorubicin Enhances Efficacy of Radiofrequency Ablation in Liver Tumors

Radiology. 2017 Nov;285(2):462-471. doi: 10.1148/radiol.2017162405. Epub 2017 Jun 19.

Abstract

Purpose To investigate the role of a tumor-penetrating peptide (internalizing CRGDRGPDC [iRGD])-integrated thermally sensitive liposomal (TSL) doxorubicin (DOX) in combination with radiofrequency (RF) ablation of liver tumors in an animal model. Materials and Methods Approval from the institutional animal care and use committee was obtained. Characterization of iRGD-TSL-DOX was performed in vitro. Next, H22 liver adenocarcinomas were implanted in 138 mice in vivo. The DOX accumulation and cell apoptosis of iRGD-TSL-DOX and TSL-DOX with or without RF were evaluated (n = 5) at different time points after treatment with quantitative analysis or pathologic staining. Mice bearing tumors were randomized into the following six groups (each group, eight mice): no treatment, iRGD-TSL-DOX, TSL-DOX, RF alone, RF ablation followed by TSL-DOX at 30 minutes (TSL-DOX combined with RF), and RF ablation followed by iRGD-TSL-DOX (iRGD-TSL-DOX combined with RF). Kaplan-Meier method was used to estimate the survival curves and log-rank test was used for comparison with statistical software. Results DOX encapsulation efficiency in iRGD-TSL-DOX was 97.5% ± 1.3 (standard deviation) with temperature-dependent drug release capability confirmed in vitro. In vivo, the iRGD-TSL-DOX group had overall higher DOX concentration in the tumor and had maximal difference at 24 hours compared with TSL-DOX group (2.7-fold). RF caused more intense cell apoptosis at 24 hours (median, 65% vs 21%, respectively; P < .001). For end-point survival, the iRGD-TSL-DOX combined with RF group had better survival (median, 32 days) than TSL-DOX combined with RF (median, 27 days; P = .035) or RF alone (median, 21 days; P < .001). Conclusion Conjugation to iRGD helped to improve intratumoral DOX accumulation and further enhanced the activity of TSL-DOX in RF ablation of liver tumors. © RSNA, 2017 Online supplemental material is available for this article.

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacokinetics*
  • Antineoplastic Agents / pharmacology
  • Apoptosis / drug effects
  • Catheter Ablation / methods*
  • Combined Modality Therapy
  • Doxorubicin / analogs & derivatives*
  • Doxorubicin / chemistry
  • Doxorubicin / pharmacokinetics
  • Doxorubicin / pharmacology
  • Drug Delivery Systems
  • Hot Temperature
  • Liver Neoplasms, Experimental / therapy*
  • Mice
  • Peptides / chemistry
  • Polyethylene Glycols / chemistry
  • Polyethylene Glycols / pharmacokinetics
  • Polyethylene Glycols / pharmacology
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • Peptides
  • liposomal doxorubicin
  • Polyethylene Glycols
  • Doxorubicin