Host-guest assembly for highly sensitive probing of a chiral mono-alcohol with a zinc trisporphyrinate

Sci Rep. 2017 Jun 19;7(1):3829. doi: 10.1038/s41598-017-03441-1.

Abstract

A zinc trisporphyrinate has been developed as a chirality sensor for chiral mono-alcohols. In its structure, there are two "spaces" surrounded by three porphyrin moieties, which allow guests to fill in. It has shown extremely high CD sensitivity for a chiral mono-alcohol with a naphthyl substituent, 1-(1-naphthyl)ethanol, at μM level, which is at least three orders of magnitude lower concentration than previous reports. A crystallographic study of the host-guest complex reveals the binding of 1-(1-naphthyl)ethanol to the zinc trisporphyrinate is greatly enhanced by multipoint interactions, such as coordination interactions, hydrogen bonding, π-π and CH···π interactions etc. Spectroscopic studies suggest the corresponding binding constant K1 is over 105 M-1, which is two or three orders of magnitude larger than other mono-alcohols. Among porphyrin systems, this trisporphyrin have the strongest binding affinity for 1-(1-naphthyl)ethanol, which leads to the highest CD sensitivity.

Publication types

  • Research Support, Non-U.S. Gov't