Effect of pasture versus indoor feeding systems on quality characteristics, nutritional composition, and sensory and volatile properties of full-fat Cheddar cheese

J Dairy Sci. 2017 Aug;100(8):6053-6073. doi: 10.3168/jds.2016-12508. Epub 2017 Jun 16.

Abstract

The purpose of this study was to investigate the effects of pasture-based versus indoor total mixed ration (TMR) feeding systems on the chemical composition, quality characteristics, and sensory properties of full-fat Cheddar cheeses. Fifty-four multiparous and primiparous Friesian cows were divided into 3 groups (n = 18) for an entire lactation. Group 1 was housed indoors and fed a TMR diet of grass silage, maize silage, and concentrates; group 2 was maintained outdoors on perennial ryegrass only pasture (GRS); and group 3 was maintained outdoors on perennial ryegrass/white clover pasture (CLV). Full-fat Cheddar cheeses were manufactured in triplicate at pilot scale from each feeding system in September 2015 and were examined over a 270-d ripening period at 8°C. Pasture-derived feeding systems were shown to produce Cheddar cheeses yellower in color than that of TMR, which was positively correlated with increased cheese β-carotene content. Feeding system had a significant effect on the fatty acid composition of the cheeses. The nutritional composition of Cheddar cheese was improved through pasture-based feeding systems, with significantly lower thrombogenicity index scores and a greater than 2-fold increase in the concentration of vaccenic acid and the bioactive conjugated linoleic acid C18:2 cis-9,trans-11, whereas TMR-derived cheeses had significantly higher palmitic acid content. Fatty acid profiling of cheeses coupled with multivariate analysis showed clear separation of Cheddar cheeses derived from pasture-based diets (GRS or CLV) from that of a TMR system. Such alterations in the fatty acid profile resulted in pasture-derived cheeses having reduced hardness scores at room temperature. Feeding system and ripening time had a significant effect on the volatile profile of the Cheddar cheeses. Pasture-derived Cheddar cheeses had significantly higher concentrations of the hydrocarbon toluene, whereas TMR-derived cheese had significantly higher concentration of 2,3-butanediol. Ripening period resulted in significant alterations to cheese volatile profiles, with increases in acid-, alcohol-, aldehyde-, ester-, and terpene-based volatile compounds. This study has demonstrated the benefits of pasture-derived feeding systems for production of Cheddar cheeses with enhanced nutritional and rheological quality compared with a TMR feeding system.

Keywords: Cheddar cheese; cow; fatty acid; pasture; total mixed ration.

MeSH terms

  • Animal Feed*
  • Animal Nutritional Physiological Phenomena*
  • Animals
  • Butylene Glycols
  • Cattle
  • Cheese / analysis*
  • Diet / veterinary
  • Female
  • Milk / chemistry*
  • Poaceae
  • Taste

Substances

  • Butylene Glycols
  • 2,3-butylene glycol