Involvement of p38 MAPK and ATF-2 signaling pathway in anti-inflammatory effect of a novel compound bis[(5-methyl)2-furyl](4-nitrophenyl)methane on lipopolysaccharide-stimulated macrophages

Int Immunopharmacol. 2017 Sep:50:6-13. doi: 10.1016/j.intimp.2017.05.015. Epub 2017 Jun 12.

Abstract

Activated macrophages produce various pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) and cyclooxygenase (COX)-2-derived prostaglandin E2 (PGE2) during inflammatory response. However, overproduction of NO and PGE2 appears to be involved in pathogenesis of various inflammatory diseases. Therefore, inhibition of NO and PGE2 production might be useful for the treatment of inflammatory-related diseases. In this study, the bis[(5-methyl)2-furyl](4-nitrophenyl)methane or BFNM was evaluated for the anti-inflammatory activity and mechanism of action in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage. BFNM inhibited NO and PGE2 production in a concentration-dependent manner and down-regulated the expression of iNOS and COX-2 at mRNA and protein levels. BFNM suppressed nuclear translocation of NF-κB p65 subunit only very slightly, and failed to decrease NF-κB DNA binding activity. In contrast, the compound significantly reduced phosphorylation of p38 MAPK and ATF-2, a component of AP-1 known to be involved in the transcriptional regulation of iNOS and COX-2, in a dose-dependent manner in LPS-induced cells. Collectively, these results suggest that BFNM has an anti-inflammatory effect in RAW 264.7 macrophages, at least in part, by suppression of NO and PGE2 production. The inhibitory effect of BFNM is mediated mainly via the p38 MAPK/ATF-2 signaling pathway. Thus, BFNM would be a lead compound for the development of novel anti-inflammatory agents.

Keywords: Anti-inflammatory; Bis[(5-methyl)2-furyl](4-nitrophenyl)methane; Macrophage; Nitric oxide; Prostaglandin E(2).

MeSH terms

  • Activating Transcription Factor 2 / metabolism
  • Alkanes / chemical synthesis
  • Alkanes / pharmacology*
  • Animals
  • Anti-Inflammatory Agents / pharmacology*
  • Cyclooxygenase 2 / metabolism
  • Dinoprostone / metabolism
  • Ligases / metabolism
  • Lipopolysaccharides / immunology
  • Macrophage Activation / drug effects*
  • Macrophages / physiology*
  • Mice
  • Nitric Oxide / metabolism
  • Nitric Oxide Synthase Type II / metabolism
  • RAW 264.7 Cells
  • Signal Transduction / drug effects
  • Transcription Factor AP-1 / metabolism
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Activating Transcription Factor 2
  • Alkanes
  • Anti-Inflammatory Agents
  • Atf2 protein, mouse
  • Lipopolysaccharides
  • Transcription Factor AP-1
  • bis((5-methyl)2-furyl)(4-nitrophenyl)methane
  • Nitric Oxide
  • Nitric Oxide Synthase Type II
  • Ptgs2 protein, mouse
  • Cyclooxygenase 2
  • p38 Mitogen-Activated Protein Kinases
  • Ligases
  • guanosine 3',5'-polyphosphate synthetases
  • Dinoprostone