Novel Integration of Perovskite Solar Cell and Supercapacitor Based on Carbon Electrode for Hybridizing Energy Conversion and Storage

ACS Appl Mater Interfaces. 2017 Jul 12;9(27):22361-22368. doi: 10.1021/acsami.7b01471. Epub 2017 Jun 27.

Abstract

Power packs integrating both photovoltaic parts and energy storage parts have gained great scientific and technological attention due to the increasing demand for green energy and the tendency for miniaturization and multifunctionalization in electronics industry. In this study, we demonstrate novel integration of perovskite solar cell and solid-state supercapacitor for power packs. The perovskite solar cell is integrated with the supercapacitor based on common carbon electrodes to hybridize photoelectric conversion and energy storage. The power pack achieves a voltage of 0.84 V when the supercapacitor is charged by the perovskite solar cell under the AM 1.5G white light illumination with a 0.071 cm2 active area, reaching an energy storage proportion of 76% and an overall conversion efficiency of 5.26%. When the supercapacitor is precharged at 1.0 V, an instant overall output efficiency of 22.9% can be achieved if the perovskite solar cell and supercapacitor are connected in series, exhibiting great potential in the applications of solar energy storage and flexible electronics such as portable and wearable devices.

Keywords: carbon electrode; integration; perovskite solar cell; power pack; supercapacitor.