Elucidating Surface Ligand-Dependent Kinetic Enhancement of Proteolytic Activity at Surface-Modified Quantum Dots

ACS Nano. 2017 Jun 27;11(6):5884-5896. doi: 10.1021/acsnano.7b01624. Epub 2017 Jun 12.

Abstract

Combining biomolecules such as enzymes with nanoparticles has much to offer for creating next generation synergistically functional bionanomaterials. However, almost nothing is known about how these two disparate components interact at this critical biomolecular-materials interface to give rise to improved activity and emergent properties. Here we examine how the nanoparticle surface can influence and increase localized enzyme activity using a designer experimental system consisting of trypsin proteolysis acting on peptide-substrates displayed around semiconductor quantum dots (QDs). To minimize the complexity of analyzing this system, only the chemical nature of the QD surface functionalizing ligands were modified. This was accomplished by synthesizing a series of QD ligands that were either positively or negatively charged, zwitterionic, neutral, and with differing lengths. The QDs were then assembled with different ratios of dye-labeled peptide substrates and exposed to trypsin giving rise to progress curves that were monitored by Förster resonance energy transfer (FRET). The resulting trypsin activity profiles were analyzed in the context of detailed molecular dynamics simulations of key interactions occurring at this interface. Overall, we find that a combination of factors can give rise to a localized activity that was 35-fold higher than comparable freely diffusing enzyme-substrate interactions. Contributing factors include the peptide substrate being prominently displayed extending from the QD surface and not sterically hindered by the longer surface ligands in conjunction with the presence of electrostatic and other productive attractive forces between the enzyme and the QD surface. An intimate understanding of such critical interactions at this interface can produce a set of guidelines that will allow the rational design of next generation high-activity bionanocomposites and theranostics.

Keywords: Michaelis−Menten; catalysis; enzyme; nanotechnology; quantum dot.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.